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@ SPECIALISTS+1 ENSEMBLE ﬂ EVALUATION METRICS

Adding small but smart perturbations to an input image generates another image, called adversarial 5.1 Definition of Expertise Domains

examples, that is visually similar to the original one. * Rejecting instances with confidence lower than a threshold (z) to a “reject class” i1
Two types of error should be considered:
1. Error Ep on the clean set, counts both clean samples that are misclassified and correctly
classified rejected clean samples
2. Error E, on the adversaries set, considers misclassified adversarial instances that are not
rejected

Consider h(x) = [h{(x), ..., hx(x)] as a multi-classification system:

The expertise domains are defined based on some subsets of classes for a classification problem

While a CNN can correctly classify a clean sample, it can confidently misclassifies its corresponding with K classes, C = {c;, ¢ cr)
y — 1> L2, v, LK ¥.

adversaries.

- For each class c;, two subsets are identified according to its corresponding row from the

+.007 x adversaries confusion matrix:

|. The confusing target subset (U;) : built by adding classes sequentially in decreasing c;-
related confusion values order until at least 80% of confusions are covered

[I. The less-confusing target subset: U;,, = C\U;

Gibbon
99.3% confidence

Panda
57.7% confidence

@ EXPERIMENTAL RESULTS

Figure 1: An adversarial example generated by Fast Gradient
Sign (FGS) [Goodfellow et al. 2014].

Specialists+1 ensemble is compared with
« Ensemble of 5 generalists, i.e. pure ensemble,
 Naive CNN*
Tested on three types of adversaries: FGS, DeepFool (DF), [Szegedy et al., (2013)]

Due to the cross-model generalization property of adversaries, an attacker can easily attack a CNN
based system by generating some adversarial examples with another CNN.

 Distribution of confidence
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There are two general trends for robustifying CNNSs:
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1. Training CNNs on adversaries
« [Goodfellow et al.,2014, Huang et al.,2016]: training on Fast Gradient Sign (FGS)

Figure 3: Schematic illustration of the expertise domains for class “Airplane”. From the confusion matrix
depicted in Fig. 2 (right), “Airplane” samples mostly get fooled toward the classes in yellow zone, while
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adversaries these samples get less fooled toward the classes in red zone.
; ; .. : a) Naive CNN* on MNIST b) Pure ensemble on MNIST c) Specialists+1 ensemble on
« [Moosavi-Dezfooli et al., 2016]: training on DeepFool (DF) adversaries _ (8) Naive ®) ,(\A)N.SDT
 [Rozsa et al.,2016]: training on diverse types of adversaries 5.2 Ensemble Creation e 5 5
2 ldentifying and rejecting adversaries as unknown . . - An ensemble of specialist CNNs generated by training a CNN for each expertise domain , i.e. | A
« [Bendale & Boult, 2016]: adapting CNNs for recognizing unknown samples as coming label subset.
from unknown classes or from fooling examples - The ensemble also includes a generalist CNN trained on the whole set of classes. b || g —
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() Specialists+1 ensemble on
CIFAR10

(d) Naive CNN* on CIFAR10 (e) Pure ensemble on CIFAR10
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Figure 4: Confidence densities on MNIST (the first row ) and CIFAR-10 (the second row)

Input:

- Instead of training a CNN on all possible types of adversaries, developing a generic framework _
 Given ensemble H = {h?, ..., hM} with h/ € RX

that can identify and reject adversarial examples.

* Error rate

 Given label subsets (expertise domains) U = {Uy, ..., Uy} [ S WEEEE ., T T drpsag.
- An ensemble of diverse CNNs can provide the following properties: * The maximum expected number of votes to class ¢y, Vi, = K + 1 T TN L N TN R RN O
« In presence of adversaries, disagreement (i.e. high entropy) in the ensemble leads to Output: B fol T e \ el S T ] B O
identifying and rejecting them. » Final prediction h(x) € R* T S S aataatttn [ SRR St asanas ) ENS SRR ST
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* In presence of clean samples, the ensemble can correctly and confidently classify them.

Threshold (7)

(@) Ep on MNIST clean

Threshold (1)

(b) E, on FGS MNIST

Threshold (7)

(c) E, on DF MNIST

Threshold (7)

Indicating the winner class: (d) E4 on Szegedy MNIST

Given an input x,
1. Computing the number of votes for each class, c;

M .
Vi (x) « Z [ [c, = argmax{_; hi (x)]
j=1

2. Indicating the winner class (k*): the class with maximum number of votes
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@ OBSERVATION

- The confusion matrices of FGS adversaries reveal some interesting patterns among labels

« Samples from each class have a high tendency to being fooled toward a limited number of
classes
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Computing final prediction: (e) Ep on CIFAR10 clean

If v,.(x) = V,;+, activate the CNNs that vote to k*:
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v :i:oo‘; Laﬁbelsﬁ R Aipane Auto. - Bie Eal—iogTrLaDEel? rlorse St ek h(x) < iz R sample:f, are discriminated from adversaries._ N
M Lapics - Increasing the robustness of CNNSs by refusing the suspicious samples.

Figure 2: The confusion matrices of adversaries for MNIST (left) and CIFAR10 (right). Each number in row i
and column j presents the percentage of the sample from class i that is being fooled as class ;.
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